US009331890B1

a2 United States Patent

Fallows et al.

US 9,331,890 B1
May 3, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

EXTENDING WEBSOCKET PROTOCOL

Applicant: Kaazing Corporation, Mountain View,

CA (US)

Inventors: John R. Fallows, Palo Alto, CA (US);
Steven R. Atkinson, Morgan Hill, CA
(US)

Assignee: Kaazing Corporation, San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 693 days.

Appl. No.: 13/670,366

Filed: Nov. 6, 2012

Related U.S. Application Data

Provisional application No. 61/710,618, filed on Oct.
5,2012.

Int. Cl1.

GO6F 15/16 (2006.01)

HO4L 29/06 (2006.01)

HO4L 12/24 (2006.01)

U.S. CL

CPC HO04L 29/0653 (2013.01); HO4L 12/24

(2013.01)
Field of Classification Search
USPC e 709/236
See application file for complete search history.

502~

(56) References Cited

U.S. PATENT DOCUMENTS

6,711,136 Bl 3/2004 Schneider et al.
9,154,485 B1* 10/2015 Fallowscccceoe... HO4L 63/08
2008/0127323 Al 5/2008 Soin et al.
2011/0010543 Al 1/2011 Schmidt et al.
2012/0207088 Al 8/2012 Liuet al.
2013/0067102 Al 3/2013 Paller et al.
2013/0152175 Al 6/2013 Hromoko et al.
2013/0232223 Al* 9/2013 Ma .cccovrerrreea, HO4L 67/2814
709/217
2014/0026187 Al 1/2014 Johnson et al.
2014/0056313 Al 2/2014 Wada
2015/0046599 Al 2/2015 Ulanov et al.
OTHER PUBLICATIONS

Fette, 1., & Melnikov, A. (Dec. 2011). “The WebSocket protocol”.*

* cited by examiner

Primary Examiner — Kevin Bates
Assistant Examiner — Emad Siddiqi
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Receiving a WebSocket frame is disclosed. The WebSocket
frame is received. It is determined whether the WebSocket
frame includes a control byte sequence in a payload data
portion of the WebSocket frame. In the event the WebSocket
frame includes in the payload data portion, the control byte
sequence and other data, the WebSocket frame interpreted as
including a control message. In the event the WebSocket
frame does not include in the payload data portion, the control
byte sequence, the WebSocket frame interpreted as not
including the control message.

25 Claims, 8 Drawing Sheets

‘ Determine that a WebSocket

Frame Should be Sent

504

Include
a Control Message
?

No

Include a Control Byte Sequence
and a Control Message in the Payload
Data Portion of the WebSocket Frame
and Send the WebSocket Frame

508

Include

Happens to Include a
Control Byte Sequence
?

NoT 810~

Nomal Payload Data that

Include a Control Byte Sequence
and No Other Data in the Payload
Data Portion of a WebSocket Frame
and Send the WebSocket Frame

512~
Include Desired Normal Payload
Data that Happens to Include the
Control Byte Sequence in the Payload
Data Portion of a Subsequent
WebSocket Frame and Send the
Websocket Frame

514~

Include the Desired Normal Data

in the Payload Data Portion of the

WebSocket Frame and Send the
WebSocket Frame

U.S. Patent May 3, 2016 Sheet 1 of 8 US 9,331,890 B1
Client
OS App
Web App
102
_—104
L—106
B
108
110~ 112~
S WebSocket
erver Gateway
114~
Server

FIG. 1

U.S. Patent May 3, 2016 Sheet 2 of 8 US 9,331,890 B1

202~

Determine that a WebSocket Connection is Desired

204~ v

Send a Request to Upgrade a Connection to
WebSocket Connection

206~ {

Receive a Response that the Upgrade to the WebSocket
Connection has been Established

FIG. 2

U.S. Patent May 3, 2016 Sheet 3 of 8 US 9,331,890 B1

302~
Receive a Request to Upgrade a Connection
to a WebSocket Connection
304~ ¥
Select WebSocket Connection Options
306~ ¥
Send Indication of Selected WebSocket Connection
Options and a Notification that the Connection has been
Upgraded to a WebSocket Connection

FIG. 3

U.S. Patent

402~

May 3, 2016 Sheet 4 of 8 US 9,331,890 B1

Receive a Request to Initialize One or More Extended
Capabilities Controlled by Control Messages

404~

Determine a Control B

Initialized Extended Capability

yte Sequence for Each

406~

¥

Provide One or More of the Determined

Control Byte

Seqguence(s)

FIG. 4

U.S. Patent May 3, 2016 Sheet 5 of 8 US 9,331,890 B1

502~

Determine that a WebSocket
Frame Should be Sent

504

Include

a Control Message
?

Yes

506 \\ ¥

No

Include a Control Byte Sequence
and a Control Message in the Payload
Data Portion of the WebSocket Frame

and Send the WebSocket Frame

508

Include
Normal Payload Data that Yes
Happens to Include a
Control Byte Sequence
?

No 510~

\ 4

Include a Control Byte Sequence
and No Other Data in the Payload
Data Portion of a WebSocket Frame
and Send the WebSocket Frame

512~ v

Include Desired Normal Payload
Data that Happens to Include the
Control Byte Sequence in the Payload
Data Portion of a Subsequent
WebSocket Frame and Send the
Websocket Frame

514_\ v

Include the Desired Normal Data

in the Payload Data Portion of the

WebSocket Frame and Send the
WebSocket Frame

FIG. 5

U.S. Patent May 3, 2016 Sheet 6 of 8 US 9,331,890 B1

602~

Receive a WebSocket Frame

604

Yy
Data Portion of the
WebSocket Frame Includes a

Control Byte Sequenc Yes
?

No

Payload

Data Portion Includes

Other Data Besides the Control

Byte Sequence
2

Yes

No

610~ ¥

Interpret a Subsequent
WebSocket Frame as Not
Including a Control Message

608~

Interpret the WebSocket
Frame as Including a
Control Message

612'\‘ v

Interpret the WebSocket
Frame as Not Including a
Control Message

FIG. 6

U.S. Patent May 3, 2016 Sheet 7 of 8 US 9,331,890 B1

702~

Detect that a Rate at Which WebSocket Frames are
being Received is Not Optimal

704~

Determine a Desired WebSocket Communication Rate

706'\ v

Notify a WebSocket Frame Sender of the Desired
WebSocket Communication Rate

FIG. 7

U.S. Patent May 3, 2016 Sheet 8 of 8 US 9,331,890 B1

802~

Receive a Desired WebSocket Frame Communication Rate

804 \\ ¥

Adjust a Transmission Rate of a WebSocket Communication
Based at Least in Part on the Received Desired Rate

FIG. 8

US 9,331,890 B1

1
EXTENDING WEBSOCKET PROTOCOL

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/710,618 entitled WEBSOCKET CON-
TROL EXTENSIONS filed Oct. 5, 2012 which is incorpo-
rated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

The WebSocket protocol enables traditional half-duplex
Hypertext Transfer Protocol (HTTP) or HTTP over SSL (HT-
TPS) communication to be upgraded to a bi-directional, full-
duplex communication channel over a Transmission Control
Protocol (TCP) connection. The WebSocket protocol has
been standardized by the Internet Engineering Task Force
(IETF) standards organization as RFC 6455. The WebSocket
protocol, as standardized, was intended to be a generalized
protocol and may lack extended functionality that may be
desired by a user. One example of desired extended function-
ality arises in situations where an application utilizing the
WebSocket protocol lacks resources to efficiently process all
of the received data in a timely manner. If data is being
received at a rate that is faster than the optimal rate, an
application utilizing the WebSocket protocol may become
overwhelmed. Although the WebSocket protocol was
intended to be extensible, the standardized version lacks spe-
cific guidance on how to best extend the protocol. Therefore,
there exists a need for an efficient way to extend the Web-
Socket protocol.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a diagram illustrating an example WebSocket
communication environment.

FIG. 2 is a flowchart illustrating an embodiment of a pro-
cess for requesting a WebSocket connection.

FIG. 3 is a flowchart illustrating an embodiment of a pro-
cess for confirming a request to establish a WebSocket con-
nection.

FIG. 4 is a flowchart illustrating an embodiment of a pro-
cess for providing a control byte sequence.

FIG. 5 is a flow chart illustrating an embodiment of a
process for sending a WebSocket frame.

FIG. 6 is a flowchart illustrating an embodiment of a pro-
cess for receiving a WebSocket frame.

FIG. 7 is a flowchart illustrating an embodiment of a pro-
cess for notifying a WebSocket frame sender of a desired
WebSocket frame communication rate.

FIG. 8 is a flowchart illustrating an embodiment of a pro-
cess for adjusting a transmission rate.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In

10

15

20

25

30

35

40

45

50

55

60

65

2

general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

The WebSocket protocol has been standardized by the
Internet Engineering Task Force (IETF) standards organiza-
tion as RFC 6455 (available at http://tools.ietf.org/html/
rfc6455). RFC 6455 includes details on the initialization
handshake and data framing of the WebSocket protocol. As
specified in RFC 6455, once a WebSocket connection has
been established using the handshake process between at
least two communicating nodes, WebSocket communication
is performed by transmitting WebSocket frames. A high-level
overview of bits contained in a WebSocket frame is given in
the following table reproduced from RFC 6455.

0 1 2 3
01234567890123456789012345678901
ottt T+ + 4
|F|R|R|R| opcode [M| Payloadlen | Extended payload length |
[T[S[S|S] @) |A] O (16/64) |
INVIV|V] Is| | (fpayload len==126/127) |
| [1]2]3] IX] \ \
ottt + ot e +
| Extended payload length continued, if payload len == 127 |
e +

+
| |Masking-key, if MASK setto 1 |
T

+ +
| Masking-key (continue) | Payload Data |
e e m e — e e e +
: Payload Data continue... :
e e e e e e e e e +
| Payload Data continue...

+ 4

As shown above, the beginning portions of a WebSocket
frame include metadata information regarding configuration
of data contained in the WebSocket frame. Additional details
on the groups of bits in the WebSocket frame may be found in
RFC 6455. The ending section of the WebSocket frame
includes the actual payload data (e.g., application level data).
The location of the payload data within the WebSocket frame
may vary depending on the size of the payload data and
whether a masking key is utilized. WebSocket frames are base
units of communication data framing in WebSocket commu-
nication. By default, the WebSocket Protocol may use port 80
for regular WebSocket connections and port 443 for Web-
Socket connections tunneled over Transport Layer Security
(TLS).

Sending a WebSocket frame that includes a control mes-
sage is disclosed. After a WebSocket connection is estab-
lished between communication parties, communication
between them is achieved using WebSocket frames. Each
frame includes a metadata portion and a payload data portion.
The metadata portion may include data specifying predeter-
mined configuration/functionality as specified in the adopted
standard of the WebSocket protocol. Because the metadata
portion is of a predetermined size and most of the bits of the
metadata portion are already committed to existing function-
ality, it is not efficient to utilize the metadata portion to extend
the functionality of the WebSocket protocol. The payload
data portion of the WebSocket frame traditionally contains
application level data that is intended to be passed to an end

US 9,331,890 B1

3

destination application. In some embodiments, the payload
data portion of a WebSocket frame is utilized to include a
control message that is processed in a different manner as
compared to a normal WebSocket frame that does not include
the control message. For example, a WebSocket frame that
includes a control message specifies an instruction on how to
process and/or communicate subsequent normal WebSocket
frames. A WebSocket frame may be identified as including a
control message by placing a control byte sequence within the
payload data portion of the WebSocket frame. When normal
payload data (e.g., end destination application level data)
without a control message is sent in a WebSocket frame, the
control byte sequence is not included in the payload data
portion of the frame. By not dedicating a fixed amount of bits
in the WebSocket frame for the control byte sequence, the
bandwidth overhead required to implement the control mes-
sage is reduced.

In some cases, an application utilizing the WebSocket pro-
tocol lacks resources to efficiently process all of the received
data in a timely manner. If data is being received at a rate that
is faster than the optimal rate, an application utilizing the
WebSocket protocol may become overwhelmed. This may
have an effect on battery life and performance of a device
utilizing the WebSocket protocol. For example, a processor of
adevice may be executed in distinct power states correspond-
ing to the amount of computing resource required. Because
transiting between power states consumes processing and
power resources, once a processor is in a high power state, it
may linger in the high power state for a period of time before
powering down to a lower power state. Bursts of large
amounts of data at a high communication rate may keep the
device at a high power state even though a constant lower
transmission rate could allow the device to process the same
amount of data in the same amount time without causing the
device to enter the high power state. In some cases, when an
application is unable to timely process received WebSocket
communication, it may be desirable to reduce the rate at
which data is being received by reducing the fidelity of the
data being sent. In other cases it may be desirable to resume/
increase the rate at which data is being sent. Therefore, it is
desirable to be able to control the communication rate of a
WebSocket communication. In some embodiments, when it
is detected that a rate at which WebSocket communication is
being received is not optimal, a desired WebSocket commu-
nication receive rate is determined by a receiver of the com-
munication. This communication rate is notified to a sender of
the WebSocket communication to enable the sender to adjust
the transmission rate of the WebSocket communication.

FIG. 1 is a diagram illustrating an example WebSocket
communication environment. Client 102 is connected to
server 110 and WebSocket gateway 112 via network 108.
Server 114 may be accessed by client 102 via WebSocket
gateway 112. Examples of client 102 include a computer, a
tablet device, a smartphone, and any computing device. Cli-
ent 102 may be used by a user to access services and/or
content at least in part provided by server 110 and/or server
114. For example, server 110 hosts web content that is
obtained by client 102. Any type of data and service may be
provided by server 110 and server 114. In some embodi-
ments, an HTTP/HTTPS connection between client 102 and
server 110 is requested by client 102 to be upgraded to a
WebSocket connection. Server 110 may handle the request
and communicate with client 102 using the WebSocket pro-
tocol. In some embodiments, a WebSocket upgrade request
received by server 110 is forwarded to WebSocket gateway
112 for handling. WebSocket gateway 112 may handle Web-
Socket upgrade requests, a WebSocket initialization hand-

10

15

20

25

30

35

40

45

50

55

60

65

4

shake, and handling of WebSocket communication for server
110. In some embodiments, once a WebSocket upgrade
request received by server 110 is forwarded to WebSocket
gateway 112 for handling, data/services provided using the
WebSocket protocol may be provided to server 112.

In some embodiments, an HTTP or HTTPS connection
between client 102 and server 114/WebSocket gateway 112 is
requested by client 102 to be upgraded to a WebSocket con-
nection. WebSocket gateway 112 enables content and/or ser-
vices provided by server 114 to be accessed via a WebSocket
protocol. For example, WebSocket gateway 112 handles
WebSocket upgrade requests, a WebSocket initialization
handshake, and handling of WebSocket frames for server 114.
WebSocket gateway 112 may proxy communication between
client 102 and server 114, at least in part by allowing Web-
Socket gateway 112 to encode communication sent by server
114 into WebSocket frames to be sent to client 102 and
decoding received by WebSocket frames from client 102 into
a data format desired by server 114. By utilizing WebSocket
gateway 112, server 114 can take advantage of the WebSocket
protocol without the need to directly implement the entire
WebSocket protocol.

Client 102 includes operating system level application (OS
App) 104. OS App 104 is hosting web application 106. For
example, OS App 104 is a web browser and web application
106 is a Javascript application executed using the web
browser. In another example, OS App 104 is a mobile device
application and web application 106 is a component of the
mobile device application. Other examples of OS App 104
include any application executing on an operating system
hosted by client 102. In some embodiments, protocol level
processing of WebSocket communication is handled by OS
App 104 for web application 106. For example, when a Web-
Socket connection is requested by web application 106, OS
App 104 handles the handshake, protocol control, protocol
configuration, and WebSocket frame and message processing
to allow only the web application level data contained in a
payload portion of a WebSocket frame to be sent to web
application 106. In some embodiments, web application 106
may process select sets of WebSocket control configurations.

Examples of network 108 include one or more of the fol-
lowing: a direct or indirect physical communication connec-
tion, mobile communication network, Internet, intranet,
Local Area Network, Wide Area Network, Storage Area Net-
work, and any other form of connecting two or more systems,
components, or storage devices together. In various embodi-
ments, the components shown in FIG. 1 may exist in various
combinations of hardware machines. One or more of the
components shown in FIG. 1 may be included in the same
machine. Other communication paths may exist and the
example of FIG. 1 has been simplified to illustrate the
example clearly. Although single instances of components
have been shown to simplify the diagram, additional
instances of any of the components shown in FIG. 1 may
exist. For example, multiple clients may be communicating
with multiple servers that may be utilizing multiple Web-
Socket gateways. Additional OS applications and web appli-
cations may be hosted by client 102. Components not shown
in FIG. 1 may also exist.

FIG. 2 is a flowchart illustrating an embodiment of a pro-
cess for requesting a WebSocket connection. The process of
FIG. 2 may be implemented on one or more components of
client 102 of FIG. 1. At 202, it is determined that a WebSocket
connection is desired. In some embodiments, determining
that the WebSocket connection is desired includes receiving a
request (e.g., from an application such as web application 106
of FIG. 1) that a WebSocket connection is desired. In some

US 9,331,890 B1

5

embodiments, determining that the WebSocket connection is
desired includes detecting that a WebSocket connection is
desired. In some embodiments, determining that the Web-
Socket connection is desired is associated with visiting a
website, launching an application, and/or a request to obtain
content available via a WebSocket connection. The determi-
nation that a WebSocket connection is desired may be asso-
ciated with an existing HTTP/HTTPS connection that is to be
upgraded to a WebSocket connection. In some embodiments,
the determination that a WebSocket connection is desired is
made by an operating system level application such as OS
application 104 of FIG. 1. For example, a web application
running on a web browser signals to the web browser that an
HTTP/HTTPS connection is to be upgraded to a WebSocket
connection. In another example, when an application such as
a mobile application is launched, an HTTP/HTTPS connec-
tion to a server is initialized and it is determined that the
HTTP/HTTPS connection is to be upgraded to a WebSocket
connection.

At 204, a request to upgrade a connection to a WebSocket
connection is sent. The request may be sent to a server of the
connection such as server 110, server 114 and/or WebSocket
gateway 112 of FIG. 1. In some embodiments, sending the
request includes initializing a WebSocket handshake to
upgrade the connection. The connection may be an already
established HTTP/HTTPS connection and/or a new HTTP/
HTTPS connection established in response to the determina-
tion made at 202. For example, the opening handshake is
intended to be compatible with HTTP/HTTPS-based server-
side software and intermediaries, so that a single port can be
used by both HTTP/HTTPS clients talking to that server and
WebSocket clients talking to that server. In some embodi-
ments, the request to update the connection is managed by an
operating system level application such as OS application 104
of FIG. 1. In some embodiments, sending the request includes
initializing an opening handshake as specified in the Web-
Socket standard. In some embodiments, the request includes
identification of one or more capabilities of a client that is not
directly specified in the WebSocket protocol standard. For
example, the request includes one or more identifiers of one
or more extended capabilities of the WebSocket protocol that
are supported by a client sending the request. In some
embodiments, the request includes a request to initialize sup-
port for an extended capability that is able to be controlled
using a control message. For example, the request includes a
request to utilize a control message regarding a specified
extended capability not directly implemented by the Web-
Socket protocol standard. In some embodiments, the request
to initialize the control message includes one or more con-
figurations associated with utilizing the control message.

At 206, a response that the upgrade to the WebSocket
connection has been established is received. The response
may be sent to a client by a server such as server 110, server
114 and/or WebSocket gateway 112 of FIG. 1. In some
embodiments, receiving the response includes receiving a
response to a WebSocket handshake upgrade request sent in
204. In some embodiments, the request to update the connec-
tion is received by an operating system level application such
as OS application 104 of FIG. 1 and the operating system
level application informs a hosted application such as web
application 106 that the WebSocket connection has been
established. In some embodiments, receiving the response
includes completing an opening handshake as defined in the
WebSocket standard. In some embodiments, the response
includes a confirmation of support for one or more protocol
capabilities that are not directly specified in the WebSocket
protocol standard. For example, the response includes iden-

10

15

20

25

30

35

40

45

50

55

60

65

6

tifiers of one or more extended capabilities of the WebSocket
protocol that are supported by a server. Not all extended
capabilities requested by a client in a request may be sup-
ported. In some embodiments, the response includes a
response to a request to initialize an extended capability that
can be controlled using a control message. For example, the
response includes confirmation that a control message for a
specified extended capability not directly implemented by the
WebSocket protocol standard may be utilized. In some
embodiments, the response includes one or more configura-
tion parameters associated with the control message. For
example, the response includes a control byte sequence to be
utilized to identify that a sent communication includes a
control message associated with a specific extended capabil-
ity identified by the control byte sequence.

FIG. 3 is a flowchart illustrating an embodiment of a pro-
cess for confirming a request to establish a WebSocket con-
nection. The process of FIG. 3 may be implemented on one or
more components of server 110, server 114 and/or Web-
Socket gateway 112. At 302, a request to upgrade a connec-
tion to a WebSocket connection is received. In some embodi-
ments, the request is associated with visiting a website,
launching an application, and/or a request to obtain content
available via a WebSocket connection. In some embodiments,
the request was made by an operating system level applica-
tion such as OS application 104 of FIG. 1. For example, a web
browser has made the request in response to a web application
running on the web browser that has requested the WebSocket
connection. In another example, when an application such as
a mobile application is launched, an HTTP/HTTPS connec-
tion to a server for the mobile application is initialized and a
request to upgrade the HTTP/HTTPS connection is sent to the
server. In some embodiments, the request received at 302
includes the request sent at 204 of FIG. 2.

In some embodiments, the request is associated with ini-
tializing a WebSocket handshake to upgrade the connection.
The connection may be an already established HTTP/HTTPS
connection and/or a new HTTP/HTTPS connection estab-
lished in response to the determination made at 202. For
example, the opening handshake is intended to be compatible
with HTTP/HTTPS-based server-side software and interme-
diaries, so that a single port can be used by both HTTP/
HTTPS clients talking to that server and WebSocket clients
talking to that server. In some embodiments, the received
request initializes an opening handshake as described in the
WebSocket standard. In some embodiments, the request
includes identification of one or more capabilities of a client
that are not directly implemented in the WebSocket protocol
standard. For example, the request includes one or more
identifiers of one or more extended capabilities of the Web-
Socket protocol that are supported by a client sending the
request. In some embodiments, the request includes a request
to initialize support for an extended capability that is able to
be controlled using a control message. For example, the
request includes a request that utilizes a control message
regarding a specified extended capability not directly imple-
mented by the WebSocket protocol standard. In some
embodiments, the request to initialize the control message
includes one or more configurations associated with utilizing
the control message. In some embodiments, the configuration
of the control message includes a configuration specifying
which one or more communication party is allowed to utilize
the control message. For example, only a client side commu-
nication party, not a server-side communication party, of a
WebSocket connection is configured to utilize a control mes-
sage that enables specification of a desired communication
rate. In some embodiments, different control messages may

US 9,331,890 B1

7

be associated with different configurations of allowed com-
munication parties that are allowed to utilize the control mes-
sage.

At 304, WebSocket connection options are selected. In
some embodiments, selecting the WebSocket connection
options include configuring the WebSocket connection and/
or options associated with the WebSocket connection. In
some embodiments, selecting the WebSocket connection
options include determining which one or more of the pro-
vided configuration options provided in the request received
at 302 should be supported. For example, the received request
includes a plurality of possible configuration options and only
one of the options is to be selected by the receiver of the
request. In some cases, the receiver may be able to select a
plurality of options from the plurality of configuration
options. In some embodiments, selecting the WebSocket con-
nection option includes determining whether a configuration
option in a received request is supported by the receiver of the
request. For example, the request received at 302 includes an
identifier of an extended capability of the WebSocket protocol
and it is determined whether the receiver of the request sup-
ports the extended capability. In some embodiments, select-
ing the WebSocket connection option includes configuring a
control message. For example, a control byte sequence to be
utilized to signal a control message associated with a speci-
fied extended capability is determined.

At 306, a response indicating the selected WebSocket con-
nection options and a notification that the connection has
been upgraded to a WebSocket connection are sent. The
response may be sentto aclient by a server such as server 110,
server 114 and/or WebSocket gateway 112 of FIG. 1. In some
embodiments, sending the response includes sending a
response to a WebSocket handshake upgrade request received
in 302. In some embodiments, sending the response includes
completing an opening handshake as defined in the Web-
Socket standard.

In some embodiments, the response includes a confirma-
tion of support for one or more protocol capabilities that are
notdirectly specified in the WebSocket protocol standard. For
example, the response includes identifiers of one or more
extended capabilities of the WebSocket protocol that are sup-
ported by a server. Not all extended capabilities requested by
aclient in a request may be supported. In some embodiments,
the response includes a response to a request to initialize an
extended capability that can be controlled using a control
message. For example, the response includes confirmation
that a control message for a specified extended capability not
directly implemented by the WebSocket protocol standard
may be utilized. In some embodiments, the response includes
one or more configuration parameters associated with the
control message. For example, the response includes a control
byte sequence to be utilized to identify that a sent communi-
cation includes a control message associated with a specific
extended capability identified by the control byte sequence.

FIG. 4 is a flowchart illustrating an embodiment of a pro-
cess for providing a control byte sequence. The process of
FIG. 4 may be implemented on one or more components of
server 110, server 114 and/or WebSocket gateway 112. In
some embodiments, at least a portion of the process of FIG. 4
is included in step 302 and/or 304 of FIG. 3. At 402, a request
to initialize one or more extended capabilities controlled by
control messages is received. In some embodiments, the
request to initialize the extended capabilities was included in
the request sent in 204 of FIG. 2. In some embodiments, the
request to initialize the controlled extended capabilities was
included in the request received in 302 of FIG. 3. In some
embodiments, the request to initialize the controlled extended

20

30

35

40

45

8

capabilities is received as a request outside of the WebSocket
upgrade handshake process. For example, the request is
received after a WebSocket connection has been already
established. In some embodiments, the request includes an
identification of one or more capabilities that are not directly
specified in the WebSocket protocol standard. For example,
the request includes an identifier of an extended capability of
the WebSocket protocol that is supported by a client sending
the request. In some embodiments, the request includes a
request to initialize the utilization of one or more control
messages regarding one or more specified extended capabili-
ties not directly implemented by the WebSocket protocol
standard. In some embodiments, the request includes one or
more configuration parameters associated with the control
messages.

At 404, a control byte sequence is selected for each initial-
ized extended capability. In some embodiments, the request
received at 402 includes an identifier for each identified
extended capability. For each of these identifiers, it is deter-
mined whether the associated extended capability is sup-
ported. For example, if the extended capability is supported,
a control byte sequence for the extended capability is deter-
mined. In some embodiments, selecting a control byte
sequence includes selecting a unique identifier that can be
used by a WebSocket communication sender to identify that a
control message for a specified extended capability is
included in a WebSocket frame. For example, the control byte
sequence may be included in a payload data portion of a
WebSocket frame to identify that contents of the frame
include a control message (e.g., a message specitying a rate
that future WebSocket frames should be transmitted) that is to
be processed in a different manner as compared to a normal
WebSocket frame (e.g., containing end application level data)
that does not include the control message. The control byte
sequence may be specifically assigned to a specific extended
capability. For example, a different control byte sequence
exists for each different extended capability that is supported.
In some embodiments, an extended capability may be selec-
tively controlled using the control byte sequence. For
example, a specified extended capability may be configured
by sending a WebSocket frame that includes the control byte
sequence and a control message. In another example, a speci-
fied extended capability may be selectively activated and
deactivated at least in part by sending a WebSocket frame that
includes the control byte sequence and a control message.

In some embodiments, the control byte sequence is a pre-
determined length. For example, all control byte sequences
contain the same number of bits (e.g., 4 bytes) to enable
efficient identification of a control byte sequence within a
WebSocket frame. In some embodiments, determining the
control byte sequence includes selecting a binary number.
The control byte sequence may be at least in part randomly
determined, selected from a list of possible options, sequen-
tially selected, and/or dynamically generated.

In some embodiments, the control byte sequence is deter-
mined such that the bits of control byte sequence contain the
maximum number of overlapping bits with the bits of one or
more other control byte sequences. For example, if all of the
different control byte sequences contain the maximum num-
ber of same overlapping bits, an efficient determination of
whether a WebSocket frame includes any type of control byte
sequence may be made by determining whether the Web-
Socket frame includes the bits of the overlapping bits. If the
WebSocket frame does not include the bits of the overlapping
bits (e.g., in the beginning of the payload data portion of the
WebSocket frame), a determination may be made that the
WebSocket frame does not include any control byte sequence

US 9,331,890 B1

9

from a group of possible control byte sequences without
making a separate determination for each control byte
sequence from the group. If the WebSocket frame does
include the bits of the overlapping bits (e.g., in the beginning
of the payload data portion of the WebSocket frame), addi-
tional processing may be performed to determine which con-
trol byte sequence, if any, from a group of possible control
byte sequences is included in the WebSocket frame. An
example of selecting bits of a control byte sequence that
contain the maximum number of overlapping bits with the
bits of one or more other control byte sequences includes
selecting as the control byte sequence an available binary
number representation that is sequentially adjacent to a
binary number representation of one of the preexisting con-
trol byte sequences.

In some embodiments, the control byte sequence is
selected based at least in part on a protocol and/or an encoding
scheme associated with a WebSocket connection. In some
embodiments, a control byte sequence is selected such that
the control byte sequence is unlikely to occur in a normal
communication utilizing the protocol and/or the encoding
scheme because the control byte sequence violates a specifi-
cation of the protocol and/or encoding scheme. For example,
a communication of a WebSocket connection may be utiliz-
ing a UTF-8 encoding scheme (i.e., a variable length encod-
ing scheme used to represent characters). In the UTF-8 speci-
fication, representing a character using 21 bits requires the
bits to be encoded into 4 bytes. The 4 bytes are “11110xxx”,
“10xxxxxx”, “10xxxxx%” and “10xxxxxx” where “X” repre-
sents a place where each bit of the 21 bits can be placed. When
the first byte (i.e., “11110xxx”) is received by a receiver, the
receiver expects the subsequent 3 bytes to begin with “10” in
a correct UTF-8 encoding. However, by selecting a 4 byte
control byte sequence that begins with “11110xxx” but where
subsequent bytes of the sequence do not all begin with “10”,
the selected control byte sequence cannot occur in a valid
UTF-8 encoded WebSocket communication. By minimizing
the likelihood that the control byte sequence is likely to occur
in normal WebSocket communication, processing required to
handle situations when non-control data sent in a WebSocket
frame happens to include a control byte sequence (potentially
causing the WebSocket frame to be incorrectly interpreted as
including a control message) may be minimized.

At 406, the one or more determined control byte sequences
are provided. In some embodiments, step 406 is included in
step 306 of FIG. 3. In some embodiments, the provided con-
trol byte sequence is received in step 206 of FIG. 2. For
example, a control byte sequence is provided together with a
response indicating a successful upgrade of a connection to a
WebSocket connection. One or more of the control byte
sequences may be provided as a hexadecimal number. For
example, an identifier of an extended capability that will be
supported by an established WebSocket connection is pro-
vided with an associated hexadecimal control byte sequence
that can be used to send a control message associated with the
extended capability.

FIG. 5 is a flow chart illustrating an embodiment of a
process for sending a WebSocket frame. The process of FIG.
5 may be implemented on client 102, server 110, server 114
and/or WebSocket gateway 112 of FIG. 1.

At 502, it is determined that a WebSocket frame should be
sent. Determining that a WebSocket frame should be sent may
be associated with preparing a WebSocket frame to be sent. If
at 504 it is determined that the WebSocket frame to be sent
should include a control message, at 506, a control byte
sequence and a control message are included in the payload
data portion of the WebSocket frame and the frame is sent.

15

20

30

35

40

45

60

10

The frame may be included in a group of frames before being
sent. The control byte sequence is associated with the extend
functionality to be controlled using the control message. In
some embodiments, the control byte sequence is a control
byte sequence determined at step 404 of FIG. 4. The control
byte sequence, if present in a WebSocket frame, may be
required to be placed within the same relative position within
a payload portion of a WebSocket frame. For example, a
control byte sequence, if present, is always placed in the
beginning of the payload data portion of a WebSocket frame.
The control message may include data that specifies a con-
figuration parameter, metadata, and/or a data to be processed
by the identified extended functionality. In some embodi-
ments, the control message is managed, created, and/or pro-
cessed at a processing level above an end destination appli-
cation. For example, the control message is processed by a
web browser above the processing level of a web application
executing within the web browser. In this example, although
normal payload contents of a WebSocket frame are forwarded
to the web application, the web application is unaware of
control messages in the payload of a WebSocket frame.

In some embodiments, if a WebSocket frame includes a
control message, the WebSocket frame is required to include
one or more specific data in a metadata portion (e.g., an
opcode portion) of the WebSocket frame. For example,
according to the WebSocket standard, all WebSocket frames
must include a 4 bit opcode that specifies how to interpret the
payload portion of the WebSocket frame. In some embodi-
ments, if a WebSocket frame includes a control message, the
WebSocket frame is required to include an opcode for a
“binary frame” (i.e., hex “%x2”). In this case, a receiver of a
WebSocket frame may make a quick determination on
whether the received WebSocket frame potentially includes a
control message by analyzing the opcode of the WebSocket
frame. If the WebSocket frame does not contain a specific
opcode (e.g., opcode for “binary frame”), it can be quickly
determined that further processing required to determine and
process a control message does not need to be performed on
that WebSocket frame.

If at 504 it is determined the WebSocket frame to be sent
should not include a control message, at 508 it is determined
whether normal payload data that happens to include a con-
trol byte sequence is being sent. In some embodiments, the
normal payload data does not include a control message. For
example, the normal payload data is intended for an end
destination application such as web application 106 of FIG. 1.
In some embodiments, although bandwidth efficiency is
gained by not dedicating a fixed portion of the WebSocket
frame to a control byte sequence, there exists a need to
address situations when normal non-control data is being sent
in the payload data portion of a WebSocket frame but the data
desired to be sent happens to include a control byte sequence
that might cause the WebSocket frame to be incorrectly inter-
preted as including a control message. If the normal payload
data to be sent happens to include a control byte sequence, at
510, a WebSocket frame that only includes in its payload data
portion the control byte sequence and no other data is sent.
This WebSocket frame signals that the subsequent Web-
Socket frame that includes the control byte sequence should
not be interpreted as containing a control message. Then at
512, the desired non-control data that happens to include the
control byte sequence is included in the payload data portion
of a subsequent WebSocket frame and the WebSocket frame
is sent. This WebSocket frame would be interpreted as not
including a control message.

Ifat508 it is determined that normal payload data to be sent
in the WebSocket frame does not happen to include a control

US 9,331,890 B1

11

byte sequence, at 514, the desired normal payload data is
included in the payload data portion of the WebSocket frame
and the WebSocket frame is sent. For example, because no
special processing is necessary with respect to the interpre-
tation of the payload data of the WebSocket frame, the Web-
Socket frame may be created and sent normally as defined in
the WebSocket standard. In some embodiments, the Web-
Socket frame may be included in a grouping of WebSocket
frames before being sent.

FIG. 6 is a flowchart illustrating an embodiment of a pro-
cess for receiving a WebSocket frame. The process of FI1G. 6
may be implemented on client 102, server 110, server 114
and/or WebSocket gateway 112 of FIG. 1. At 602, a Web-
Socket frame is received. In some embodiments, the received
frame includes the WebSocket frame sent at least in part by
using the process of FIG. 5. In some embodiments, the
received WebSocket frame may be one frame of a group of
WebSocket frames received together.

At 604 it is determined whether the payload data portion of
the received WebSocket frame includes a control byte
sequence. In some embodiments, the control byte sequence is
a control byte sequence determined at 404 of FIG. 4. The
control byte sequence, if present in a WebSocket frame, may
be required to be placed within the same relative position as a
payload portion of a WebSocket frame. For example, a con-
trol byte sequence, if present, is always placed in the begin-
ning of the payload data portion of a WebSocket frame. If at
604 it is determined that the payload data portion of the
received WebSocket frame includes a control byte sequence,
at 606 it is determined whether the payload data portion also
includes other data besides the control byte sequence. If the
payload data does include other data, at 608, the received
WebSocket frame is interpreted as including a control mes-
sage. In some embodiments, interpreting the WebSocket
frame as including a control message includes determining
which extended functionality is associated with the control
byte sequence and interpreting the control message based on
the determined extended functionality.

In some embodiments, interpreting the WebSocket frame
as a control message includes processing the control message
included in the payload data portion of the WebSocket frame.
This data may specify a configuration parameter, metadata,
and/or a data to be otherwise processed. In some embodi-
ments, the control message is managed, created, and/or pro-
cessed at a processing level above an end destination appli-
cation. For example, the control message is managed by a
web browser above the processing level of a web application
executing within the web browser. In this example, although
normal payload contents ofa WebSocket frame are forwarded
to the web application, the web application is unaware of the
control messages and is provided the control message. In
some embodiments, the WebSocket frame interpreted at 608
was sent in step 506 of FIG. 5.

If'at 606 it is determined that the payload data portion does
not include other data besides the control byte sequence, at
610 it is determined to interpret the next received WebSocket
frame that includes the control byte sequence as not including
a control message. For example, payload data contents of a
subsequently received WebSocket frame are forwarded to a
destination application such as web application 106 of FIG. 1.
In some embodiments, the WebSocket frame that only
includes the control byte sequence in its payload was sent in
step 510 of FIG. 5 and the subsequent WebSocket frame to be
interpreted as not a control message is sent in step 512 of FIG.
5.

If at 604 it is determined that the payload portion of the
received WebSocket frame does not include the control byte

20

40

45

65

12

sequence, at 612, the WebSocket frame is interpreted as not
including a control message. For example, because no special
processing is necessary with respect to the interpretation of
the payload data of the WebSocket frame, the WebSocket
frame may be processed normally as defined in the Web-
Socket standard. In some embodiments, payload contents of
the WebSocket frame are forwarded to a destination applica-
tion such as web application 106 of FIG. 1 because the Web-
Socket frame does not include a control byte sequence. In
some embodiments, the WebSocket frame interpreted at 612
was sent in step 514 of FIG. 5.

Insome embodiments, the process of FIG. 6 is only utilized
to determine whether a received WebSocket frame includes a
control message if the WebSocket frame includes one or more
specific data in an opcode portion of the WebSocket frame.
For example, according to the WebSocket standard, all Web-
Socket frames include a 4 bit opcode that specifies how to
interpret the payload portion of the WebSocket frame. In
some embodiments, if a WebSocket frame includes a control
message, the WebSocket frame is required include an opcode
for a “binary frame” (i.e., hex “%x2”). In this case, a receiver
of' the received WebSocket frame may make a quick determi-
nation on whether the received WebSocket frame potentially
includes a control message by analyzing the opcode of the
WebSocket frame. If the WebSocket frame does not contain a
specific opcode (e.g., opcode for “binary frame™), it can be
quickly determined that further processing required to deter-
mine and process a control message does not need to be
performed on the WebSocket frame and, as in the case of step
612, the WebSocket frame is interpreted as not including a
control message.

FIG. 7 is a flowchart illustrating an embodiment of a pro-
cess for notifying a WebSocket frame sender of a desired
WebSocket frame communication rate. The process of FIG. 7
may be implemented on client 102, server 110, server 114
and/or WebSocket gateway 112 of FIG. 1. An example of an
extended functionality includes the ability to signal to a
sender of a WebSocket communication a desired communi-
cation rate of the WebSocket communication. For example,
because WebSocket communication utilizes a TCP connec-
tion that was designed to transmit a given amount of data as
fast as possible, WebSocket communication is transmitted at
the fastest supported speed. However, in some cases it is not
desirable to send and receive WebSocket communication at
the fastest possible speed. In various embodiments, the pro-
cess of FIG. 7 is executed periodically, dynamically, and/or
on a predetermined basis.

At702, it is detected that a rate at which WebSocket frames
are being received is not optimal. In some embodiments,
although a system receiving the communication may be able
to receive the communication at a relatively fast speed, an
application utilizing the WebSocket protocol may lack
resources (e.g., lack of processing resources allocated to the
application) to efficiently process all of the received datain a
timely manner. If data is being received by a receiving system
at a rate that is faster than the optimal rate, an application
utilizing the WebSocket protocol may become overwhelmed.
In some embodiments, it is determined that the rate is not
optimal at least in part by detecting that data is being received
at a rate that is faster than the rate the data can be processed.
In some embodiments, it is determined that the communica-
tion rate is not optimal (e.g., faster or slower than desired) at
least in part by detecting that one or more processing
resources (e.g., processing utilization, memory utilization,
storage utilization, etc.) have reached a specified utilization
level. In some embodiments, the rate is not optimal because
data is being received by a receiving system at a rate that is

US 9,331,890 B1

13

slower than the optimal rate. In some embodiments, it is
determined that the rate is not optimal at least in part by
detecting that data is being received at a rate that is slower
than the rate data can be processed. For example, a receiver
has previously requested a reduction in the transmission rate
and subsequently the receiver may now desire data to be
transmitted at a faster rate (e.g., normal full speed due to an
increase in resources of the receiver, a slighter faster rate due
to a previous miscalculation of the desired rate, etc.).

In some cases, a device receiving the WebSocket commu-
nication may be a mobile or other device utilizing battery
power. The life and performance of the battery may be linked
to a communication rate of data that is being received and
processed. For example, a processor of a device may be
executed in distinct power states corresponding to amounts of
computing resources required. Because transitioning
between power states consumes processing and power
resources, once a processor is in a high power state, it may
linger in the high power state for a period of time before
powering down to a lower power state. Bursts of large
amounts of data at a high communication rate may keep the
device at a high power state even though a constant lower
transmission rate could allow the device to process the same
amount of data in the same amount of time without causing
the device to enter the high power state. Conversely, it may be
determined that the rate is not optimal at least in part by
detecting that data can be received at a faster rate without a
material effect on power consumption. For example, a
receiver has previously requested a reduction in the transmis-
sion rate and subsequently the receiver may now desire data to
be transmitted at a faster rate (e.g., normal full speed due to a
device being plugged into a new power source or a slighter
faster rate due to a previous miscalculation of the desired rate,
etc.).

In some embodiments, it is determined that the rate is not
optimal at least in part by detecting a power state of a device.
The power state may be a processor power state, a device
power scheme, a type of power being utilized/available (e.g.,
battery or plugged-in to external power source), and/or any
other state associated with a power consumption of a device.
In some embodiments, it is determined that the rate is not
optimal at least in part by detecting a battery state of a device.
The battery state may include, for example, a battery power
level, a type of a battery, and/or a charging state of a battery.
In some embodiments, it is determined that the rate is not
optimal at least in part by analyzing a power consumption/
utilization history. The power consumption history may
include historical power states of a device and/or historical
battery state of a device. In some embodiments, power con-
sumption/utilization history may include a history of a par-
ticular device and/or one or more other devices (e.g., similar
devices) associated with the particular device.

In some embodiments, it may be desirable to control the
rate at which WebSocket frames are being sent to control a
resolution of a data being received. For example, a higher
fidelity, quality, and/or sampling of data being communicated
via a WebSocket connection may be desired. In some embodi-
ments, it may be desirable to control the rate at which Web-
Socket frames are being sent to control the bandwidth utili-
zation (e.g., to reduce bandwidth charges by a network
provider). For example, it is determined that the rate is not
optimal at least in part by detecting a type of communication
link (e.g., WIFI vs. cellular connection) being utilized. In
some embodiments, it is determined that the rate is not opti-
mal at least in part by detecting the amount of allocated
bandwidth consumed. For example, a user may be allocated a
fixed amount of bandwidth that can be utilized within a fixed

10

20

25

30

35

40

45

50

55

60

65

14

amount of time and the optimal rate may depend on the
amount of bandwidth that has already been consumed within
the time period.

At 704, a desired WebSocket communication rate is deter-
mined. The desired WebSocket communication rate may
include a desired WebSocket frame send rate and/or a desired
WebSocket frame receive rate. In some embodiments, the
desired rate is determined at least in part by determining a
quantity of data that has been received but not yet processed
by an application. In some embodiments, the desired rate is
determined at least in part by determining a data receive rate
and a processing rate of an application. For example, data
may be received at 25 kilobytes per second (KB/s) but an
application may only be able to process the dataat 15 KB/s. In
this case, the desired rate may be 15 KB/s (i.e., 10 KB/s less
than the current receive rate). In some embodiments, the
desired rate is determined at least in part by determining the
amount of data that has been already received yet not pro-
cessed. For example, the desired rate is determined to be less
than a processing rate of an application to allow the applica-
tion to catch up on processing of backlogged data to be
processed. For example, an application is able to process data
at 15 KB/s but a desired rate of 14 KB/s is chosen to allow the
application to catch up on processing. The desired rate may be
increased when no additional received data to be processed
exists or amount of received data to be processed reaches a
threshold amount.

In some embodiments, in order to control the rate at which
WebSocket frames are sent, a sender may reduce/improve the
fidelity, quality, and/or sampling of data being communicated
via a WebSocket connection. For example, a resolution of a
video being transmitted may be reduced/improved. In another
example, stock price quotes being transmitted are sampled at
a longer/shorter interval. In some embodiments, the desired
WebSocket communication rate is associated with a resolu-
tion, fidelity, quality, and/or sampling rate of a data being
communicated. In some embodiments, the determined com-
munication rate includes a byte per second rate. In some
embodiments, the determined communicate rate is a relative
direction change indicator. For example, the desired deter-
mined rate may simply indicate an increase or decrease in rate
as compared to a current communication rate. In some
embodiments, the desired rate is determined at least in part by
comparing a rate WebSocket frames are being received as
compared to a rate that WebSocket frames are being pro-
cessed. In some embodiments, the desired rate is determined
at least in part by detecting utilization indicator(s) of process-
ing resources (e.g., measurements of processing utilization,
memory utilization, storage utilization, etc.). In some
embodiments, the desired rate is determined at least in part by
detecting a power and/or battery state/history of a device. In
some embodiments, the desired rate is determined based at
least in part on a type of communication link (e.g., WIFI vs.
cellular connection) being utilized. In some embodiments,
the desired rate is determined based at least in part on the
amount of bandwidth allocated/consumed.

At 706, a WebSocket frame sender is notified of the deter-
mined WebSocket communication rate. Previously it has
been difficult to control the rate at which WebSocket frames
are sent because only the receiver (i.e., not the sender) is
aware of the optimal transmission/receive rate. In some
embodiments, by communicating a desired adjustment in the
rate at which WebSocket frames are sent, a receiver is able to
control and/or possibly influence the rate at which WebSocket
frames are being sent and/or received. The communication of
the desired rate adjustment may be achieved using the control
message discussed earlier in the specification. In some

US 9,331,890 B1

15

embodiments, an extended functionality to control the Web-
Socket communication rate is initialized at least in part by
utilizing the process of F1G. 4. For example, using the process
of FIG. 4, communication parties of a WebSocket communi-
cation have confirmed support of the communication rate
controlling extended functionality and a control byte
sequence to be used to identify that a control message asso-
ciated with the extended functionality is contained in a Web-
Socket frame.

In some embodiments, the WebSocket frame sender is
notified of the determined WebSocket communication rate at
least in part by sending a control message using at least a
portion of the process of FIG. 5. For example, the WebSocket
frame sender is notified of the determined WebSocket com-
munication rate at least in part by sending a WebSocket frame
that includes the determined rate as part of the control mes-
sage. The WebSocket frame that is sent may include in its
payload data portion, a control byte sequence and the deter-
mined desired rate that may be numerical (e.g., bits per sec-
ond rate, kilobytes per second rate, etc.) or a desired relative
speed change direction (e.g., resume normal faster rate, rate
increase, or rate decrease command).

FIG. 8 is a flowchart illustrating an embodiment of a pro-
cess for adjusting a transmission rate. The process of FIG. 8
may be implemented on client 102, server 110, server 114
and/or WebSocket gateway 112 of FIG. 1. In some embodi-
ments, the process of FIG. 8 is included in the process of F1G.
6.

At 802, a desired WebSocket communication rate is
received. In some embodiments, the received rate is the rate
sent in step 706 of FIG. 7. In some embodiments, the received
WebSocket communication rate is included in the received
WebSocket frame in step 602 of FIG. 6 and the desired Web-
Socket communication rate is obtained from the WebSocket
frame in step 608 of FIG. 6. In some embodiments, an
acknowledgement message (e.g., in a WebSocket frame) is
received for every increment of data processed by an appli-
cation of the acknowledgment message sender. Based at least
in part on the rate the acknowledgement messages are
received, a desired WebSocket communication rate is deter-
mined. In some embodiments, information that can be used to
determine the desired rate is received (e.g., in a WebSocket
frame) and based at least in part on the received information,
the desired WebSocket communication is determined. For
example, information such as a type of device, a power state
of'a device, a type of power being utilized/available, a battery
state of a device, a power consumption/utilization history, a
type of communication link (e.g., WIFI vs. cellular connec-
tion) being utilized, and/or amount of allocated bandwidth
consumed is received and a sender of the WebSocket com-
munication determines the desired WebSocket communica-
tion rate.

At 804, a transmission rate of a WebSocket communication
is adjusted based at least in part on the received desired rate.
In some embodiments, step 804 is included in step 608 of
FIG. 6. In some embodiments, adjusting the transmission rate
includes adjusting the amount of data being sent via a Web-
Socket connection based at least in part on the desired rate. In
some embodiments, adjusting the transmission rate includes
adjusting the amount of data being sent per unit of time based
at least in part on the desired rate. In some embodiments,
adjusting the transmission rate includes adjusting a fidelity,
quality, and/or sampling of data being communicated via a
WebSocket connection. In some embodiments, the received
desired rate is a relative speed direction indicator and the rate
is increased/decreased by a predetermined amount and/or a
dynamically determined amount in the direction specified by

25

30

40

45

55

16

the indicator. In some embodiments, the received desired rate
is a numerical rate and the transmission rate is adjusted as
close as possible to the desired rate.

In various embodiments, it may not be efficient and/or
possible to adjust the transmission rate to the exact desired
rate and the transmission rate is adjusted to a different rate
based at least in part on the desired rate. For example, the
desired rate may not be achievable and the receiver of the
desired rate adjusts the transmission rate to an achievable rate
that is as close as possible to the desired rate. In some embodi-
ments, the request to adjust the transmission rate to the pro-
vided desired rate may be ignored. For example, the desired
rate may not be possible and/or known to be incorrect/unde-
sirable and a receiver of the desired rate may ignore the
request. In some embodiments, the WebSocket connection
may be associated with a maximum transmission rate limit
and the transmission rate can only be adjusted up to the limit
even if received desired rate is higher than the limit. For
example, a WebSocket server may provide different speed/
bandwidth service levels based on a type of account/plan
subscribed by a client. In some embodiments, a receiver of a
WebSocket communication is aware of a maximum commu-
nication rate (e.g., provided by a sender during an opening
handshake process, initialization/configuration of an
extended functionality, or during another instance), and the
receiver (or any intermediary) self-controls processing rate of
the received communication to account for the maximum
communication rate. In some embodiments, the receiver of a
WebSocket communication is aware of a maximum allotted
communication rate limit and receiver requests changes to the
WebSocket communication rate within the limit

Although the examples above discuss upgrading an exist-
ing HTTP/HTTPS to a WebSocket connection, in some
embodiments, another type of connection such as a stream of
a SPDY protocol connection is requested to be upgraded to a
WebSocket connection. In various embodiments, other pro-
tocol such as SPDY may be utilized on top of an established
WebSocket connection.

Although the examples above discuss upgrading an exist-
ing HTTP/HTTPS connection to a WebSocket connection, in
some embodiments, a protocol other than the WebSocket
protocol may be used. For example, another protocol that
changes a HTTP/HTTPS connection to a bi-directional, full-
duplex communication channel may be utilized.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system for receiving a WebSocket frame, comprising:

a communication interface configured to receive the Web-

Socket frame; and

a processor configured to:

determine whether the WebSocket frame includes a con-
trol byte sequence in a payload data portion of the
WebSocket frame, wherein determining whether the
WebSocket frame includes the control byte sequence
includes analyzing an opcode included in the Web-
Socket frame;

in the event the WebSocket frame includes in the pay-
load data portion, the control byte sequence and other
data, interpret the WebSocket frame as including a
control message, wherein in the event the control byte
sequence is included in the payload data portion, the
control byte sequence is required to be in a beginning
of the payload data portion;

US 9,331,890 B1

17

in the event the WebSocket frame does not include in the
payload data portion, the control byte sequence, inter-
pret the WebSocket frame as not including the control
message; and

in the event the WebSocket frame includes in the pay-
load data portion, a specification that a subsequently
received WebSocket frame is to be not interpreted as
including the control message, interpret the subse-
quently received WebSocket frame as not including
the control message even if the subsequently received
WebSocket frame includes the control byte sequence
and other data in the payload data portion of the sub-
sequently received WebSocket frame.

2. The system of claim 1, wherein the specification that the
subsequently received WebSocket frame is to be not inter-
preted as including the control message is specified by includ-
ing in the payload data portion, the control byte sequence but
no other data.

3. The system of claim 1, wherein the control message is
associated with an extended WebSocket communication
functionality not directly implemented by a WebSocket pro-
tocol.

4. The system of claim 3, wherein the control byte
sequence is a unique identifier of the extended WebSocket
communication functionality.

5. The system of claim 1, wherein the control byte
sequence is one of a plurality of control byte sequences that
are each associated with a different WebSocket communica-
tion functionality.

6. The system of claim 5, wherein the control byte
sequence was selected to contain a maximum number of
overlapping bits with other control byte sequences in the
plurality of control byte sequences.

7. The system of claim 1, wherein the control byte
sequence was at least in part randomly determined.

8. The system of claim 1, wherein the control byte
sequence was at least in part sequentially selected.

9. The system of claim 1, wherein the control byte
sequence was at least in part dynamically generated.

10. The system of claim 1, wherein interpreting the Web-
Socket frame as including the control message includes deter-
mining which extended WebSocket protocol functionality is
associated with the control message at least in part by using
the control byte sequence.

11. The system of claim 1, wherein interpreting the Web-
Socket frame as including the control message includes inter-
preting the control message based on an extended function-
ality referenced by the control byte sequence.

12. The system of claim 1, wherein the control message
includes a configuration parameter.

13. The system of claim 1, wherein interpreting the Web-
Socket frame as including the control message includes not
forwarding data in the payload data portion to an end desti-
nation application.

14. The system of claim 1, wherein interpreting the Web-
Socket frame as not including the control message includes
forwarding data included in the payload data portion to an end
destination application.

15. The system of claim 1, wherein an ability to utilize the
control message was initialized during a handshake process
to establish a WebSocket connection of the WebSocket frame.

16. The system of claim 1, wherein an ability to utilize the
control message was initialized after a WebSocket connection
of the WebSocket frame had been established.

10

20

25

30

35

40

45

50

55

60

65

18

17. The system of claim 1, wherein the control byte
sequence was at least in part determined based on an encoding
scheme associated with a WebSocket connection of the Web-
Socket frame.

18. The system of claim 1, wherein the control byte
sequence was at least in part determined based on a protocol
associated with a WebSocket connection of the WebSocket
frame.

19. The system of claim 1, wherein determining whether
the WebSocket frame includes the control byte sequence
includes analyzing a header portion of the WebSocket frame.

20. The system of claim 1, wherein the system is not
configured to send a WebSocket frame with the control mes-
sage.

21. A system for sending a WebSocket frame, comprising:

a processor configured to:

determine that the WebSocket frame should be sent;

determine whether to send a control message in the
WebSocket frame;

in the event it is determined that the control message
should be sent, insert a control byte sequence and a
control message in a payload data portion of the Web-
Socket frame, wherein in the event the control byte
sequence is included in the payload data portion, the
control byte sequence is required to be in a beginning
of the payload data portion; and

in the event it is determined that the control message
should not be sent, not insert the control byte
sequence in the WebSocket frame; and

in the event it is determined that the control message
should not be sent but a data to be sent happens to
include the control byte sequence, insert in the pay-
load data portion of the WebSocket frame a specifi-
cation that a subsequently received WebSocket frame
is to be not interpreted as including the control mes-
sage even if the subsequently received WebSocket
frame includes the control byte sequence and other
data in the payload data portion of the subsequently
received WebSocket frame; and

a communication interface configured to send the Web-

Socket frame.
22. The system of claim 21, wherein the specification that
the subsequently received WebSocket frame is to be not inter-
preted as including the control message is specified by includ-
ing in the payload data portion, the control byte sequence but
no other data.
23. A method for receiving a WebSocket frame, compris-
ing:
receiving the WebSocket frame;
using a processor to determine whether the WebSocket
frame includes a control byte sequence in a payload data
portion of the WebSocket frame, wherein to determine
whether the WebSocket frame includes the control bye
sequence includes analyzing an opcode included in the
WebSocket frame;

in the event the WebSocket frame includes in the payload
data portion, the control byte sequence and other data,
interpreting the WebSocket frame as including a control
message,

wherein in the event the control byte sequence is included

in the payload data portion, the control byte sequence is
required to be in a beginning of the payload data portion;
and

in the event the WebSocket frame does not include in the

payload data portion, the control byte sequence, inter-
preting the WebSocket frame as not including the con-
trol message; and

US 9,331,890 B1

19

in the event the WebSocket frame includes in the payload
data portion, a specification that a subsequently received
WebSocket frame is to be not interpreted as including
the control message, interpret the subsequently received
WebSocket frame as not including the control message
even if the subsequently received WebSocket frame
includes the control byte sequence and other data in the
payload data portion of the subsequently received Web-
Socket frame.

24. The method of claim 23, wherein the specification that
the subsequently received WebSocket frame is to be not inter-
preted as including the control message is specified by includ-
ing in the payload data portion, the control byte sequence but
no other data.

25. A computer program product for receiving a Web-
Socket frame, the computer program product being embodied
in a non-transitory computer readable storage medium and
comprising computer instructions for:

receiving the WebSocket frame;

determining whether the WebSocket frame includes a con-
trol byte sequence in a payload data portion of the Web-
Socket frame, wherein determining whether the Web-

5

10

15

20

20

Socket frame includes the control byte sequence
includes analyzing an opcode included in the Web-
Socket frame;

in the event the WebSocket frame includes in the payload

data portion, the control byte sequence and other data,
interpreting the WebSocket frame as including a control
message, wherein in the event the control byte sequence
is included in the payload data portion, the control byte
sequence is required to be in a beginning of the payload
data portion; and

in the event the WebSocket frame does not include in the

payload data portion, the control byte sequence, inter-
preting the WebSocket frame as not including the con-
trol message; and

in the event the WebSocket frame includes in the payload

data portion, a specification that a subsequently received
WebSocket frame is to be not interpreted as including
the control message, interpret the subsequently received
WebSocket frame as not including the control message
even if the subsequently received WebSocket frame
includes the control byte sequence and other data in the
payload data portion of the subsequently received Web-
Socket frame.

